Chapter 12

Database Systems

Multimedia database systems are database systems where, besides text and other
discrete data, audio and video information will also be stored, manipulated and
retrieved. To provide this functionality, multimedia database systems require a
proper storage technology and file system.

Current storage technology allows for the possibility of reading, storing and writing
audio and video information in real-time. This can happen either through dedicated
external devices, which have long been available, or through system integrated sec-
ondary storage. The external devices were developed for studio and electronic en-
tertainment applications; they were not developed for storage of discrete media. An
example is a video recorder controlled through a digital interface. On the other hand,
the integrated secondary storage for audio and video is often based on optical tech-
nology (see Chapter 7). The system integration of secondary storage is performed
by the operating system through the device drivers. ross@systems.seas.upenn.edu
Further, multimedia databases need proper file systems (see Chapter 9) because
external devices can be accessed easier through a file directory. The same applies
to the integrated secondary storage.

464 CHAPTER 12. DATABASE SYSTEMS

12.1 Multimedia Database Management System

Multimedia applications often address file management interfaces at different levels
of abstraction. Consider the following three applications: a hypertezt application
can manipulate nodes and edges; an audio editor can read, write and manipulate
audio data (sentences); an audio-video distribution service can distribute stored
video information.

At first, it appears that these three applications do not have much in common, but
in all three their functions can uniformly be performed using a Multimedia DataBase
Management System (MDBMS). The reason is that in general, the main task of a
DataBase Management System (DBMS) is to abstract from the details of the storage
access and its management. As shown in Figure 1.1 (architectural overview of all
multimedia system components), MDBMS is embedded in the multimedia system
domain, located between the application domain (applications, documents) and the
device domain (storage, compression and computer technology). The MDBMS is
integrated into the system domain through the operating system and communication
components. Therefore, all three applications can be put on the same abstraction
level with respect to DBMS. Further, a DBMS provides other properties in addition
to storage abstraction:

e Persistence of Data

The data may outlive processing programs, technologies, etc. For example,
insurance companies must keep data in databases for several decades. During
this time, computer technology advances and with these changes operating
systems and other programs advance. This implies that a DBMS should be
able to manipulate data even after the changes of the surrounding programs.

o Consistent View of Data

In multi-user systems it is important to provide a consistent view of data dur-
ing processing database requests at certain points. This property is achieved
using time synchronization protocols.

o Security of Data

i2.2. CHARACTERISTICS OF AN MDBMS 465

Security of data and integrity protection in databases in case of system failure
is one of the most important requirements DBMS. This property is provided
using the transaction concept.

o Query and Retrieval of Data

Different information (entries) is stored in databases, which later can be re-
trieved through database queries. Database queries are formulated with query
languages such as SQL. Further, every entry in a database includes its own
state information (e.g., entry was modified), which needs to be retrieved cor-
rectly to provide correct information about the entry.

The inclusion of multimedia functionalities entails database management of very
large amounts of data distributed over different secondary storage media. For ex-
ample, in the case of a relational database, a vector of attributes representing a
video clip with sound can require a storage capacity of several megabytes. Besides
the need for a large storage capacity, real-time requirements are also demanded of
DBMS procesging of continuous data. The design of an MDBMS must comply with
these requirements. It is important to point out that if external devices are used, the
real-time requirements are outside of the DBMS scope and the connected devices
implicitly meet them. In an integrated system, real-time requirements need to be
considered inside of the DBMS scope. A more detailed consideration of MDBMSs
and multimedia systems is given in [Mey91].

In the following sections, the tasks of a database system with respect to multimedia
and an overview of system architecture are presented. Further, a description of
multimedia data formats and their related operations follows. Final comments of
this chapter concentrate on the expected research results in this area.

12.2 Characteristics of an MDBMS

An MDBMS can be characterized by its objectives when handling multimedia data:

1. Corresponding Storage Media

466

CHAPTER 12. DATABASE SYSTEMS

Multimedia data must be stored and managed according to the specific char-
acteristics of the available storage media. Here, the storage media canr be both
computer integrated components and external devices. Additionally, read-only
(such as a CD-ROM), write-once and write-many storage media can be used.

Descriptive Search Methods

During a search in a database, an entry, given in the form of text or a graphical
image, is found using different queries and the corresponding search methods.
A query of multimedia data should be based on a descriptive, content-oriented
search in the form, for example, of “The picture of the woman with a red scarf”.
This kind of search relates to all media, including video and audio.

Device-independent Interface

The interface to a database application should be device-independent. For
example, a parameter could specify that the following audio and video data
will not change in the future. Hence, the MDBMS will know that the storage
media is a CD-WO. . '

Format-independent Interface

Database queries should be independent from the underlying media format,
meaning that the interfaces should be format-independent. The programming
itself should also be format-independent, although in some cases, it should
be possible to access details of the concrete formats. Hence, the application
programmer determines the level of format abstraction with its advantages
and disadvantages. This leads to the development of applications which may
zlso make use of future formats, MDBMS device-independence and format-
independence allow for new storage technologies to be used without changing
the current multimedia database applications.

View-specific and Simultaneous Data Access

The same multimedia data can be accessed (even simultaneously) through
different queries by several applications. Hence, consistent access to shared
data (e.g., shared editing of 2 multimedia document among several users) can
be implemented.

12.2. CHARACTERISTICS OF AN MDBMS 467

6. Management of Large Amounts of Data

The DBMS must be capable of handling and managing large amounts of data
and satisfying queries for individual relations among data or attributes of
relations [Fel90].

7. Relational Consistency of Data Management

Relations among data of one or different media must stay consistent corre-
sponding to their specification. The MDBMS manages these relations and
can use them for queries and data output. Therefore, for example, navigation
through a document is supported by managing relations among individual
parts of a document. There are several different relations [Mey91]:

e The attribute relation provides different descriptions or presentations of
the same object. For example, consider a “bird” entry in an ornithological
lexicon. Here, the voice for each bird is recorded as an audio signal,
the flight of each bird is presented as a motion video and additional
images and text accompany the bird description. From the viewpoin
of a relational database, an attribute vector is assigned to each bird,
including the different representations as attributes.

¢ The component relation includes all the parts belonging to a data objeci.
A catalogue of the components of a car and a book, consisting of chapter,
section and subsection components, are examples of this relation.

s The substitution relation defines different kinds of presentation of the
same information. For example, the results of an equation can be pre-
sented as tables, graphs or animation.

e A synchronization relation describes the temporal relations between data
units. Lip synchronization between audio and video is one example of
this relation.

8. Real-time Data Transfer

The read and write operations of continuous data must be done in real-time.
The data transfer of continruous data has a higher priority than other database
management actions. Hence, the primitives of a multimedia operating system
should be used to support the real-iime transfer of continuous data.

468 CHAPTER 12. DATABASE SYSTEMS

9. Long Transactions

The performance of a transaction in a MDBMS means that transfer of a large
amount of data will take a long time and must be done in a reliable fashion.
An example of a long transaction is the retrieval of a movie.

Most of the current prototypes of an MDBMS include the management of storage,
local multimedia devices and adapters. This pragmatic approach has the advantage
that a multimedia system is fully managed in agreement with the requirements of
the considered DBMS. This approach is also often chosen for document and hy-
pertext processing systems. Note that, for example, the results from the network
communication {e.g., management of remote devices) are not often taken into ac-
count in an MDBMS. However, the remote multimedia devices in MDBMS must be
managed too. The current solution is that the device muiagement, as well as the
integration of local and remote devices. is often developed in conjunction with the
communication system. '

In both research areas (MDBMS and coinmunication systems). the development of
multimedia primitives as part of the operating system is not sufficiently considered,
although the management of multimedia devices should actually be the task of
the operating system. In our architecture model, shown in Figure 1.1, the system
components around MDBMS and MDBMS itself have the following functions:

o The operating system provides the management interface for MDBMS to all
local devices.

e The MDBMS provides an abstraction of the stored data and their equivalent
devices, as is the case in DBMS without multimedia.

¢ The communication system provides for MDBMS abstractions for communi-
cation with entities at remote computers. These communication abstractions
are specified through interfaces according to, for example, the Open System
Interconnection {QOSI) architecture.

o A layer above the DBMS, operating system and communication system can
unify all these different abstractions and offer them, for example, in an object-

12.3. DATA ANALYSIS 469

oriented environment such as a toolkil. Thus, an application should have access
to each abstraction at different levels.

This model corresponds, more or less, to the proposed MDBMS architecture pre-
sented in [Mey91]. To refine this architecture, for each medium, an individual man-
agement unit could be implemented, which would be used by the medium-specific
server, and the services of the management unit could be offered to a common
query processor [Loc90]. This query processor is managed by a database application
interface manager. The application interface manager provides an application in-
terface to the user with a specification of different views to a database entry (e.g.,
entry “bird” can be specified by sound, motion video and/or text views). Another
management unit processes the relations between data of different media.

This MDBMS architecture does not imply any implementation with the same par-
tition of the components.

12.3 Data Analysis

Meyer-Wegener performed a detailed analysis of multimedia data storage and ma-
nipulation in a multimedia database system [Mey91]. This section describes the
analysis of compressed data and other media. In the analysis, two questions are
addressed:

1. How are these daia structured?

It is important to specify what kind of information is needed in the entry
structure to process the multimedia entry in a MDBMS.

2. How can these data be accessed?

That is to say, how are the proper operations defined to access multimedia
entries. One can define media-dependent, as well as media-independent op-
erations. In a next step, a class hierarchy with respect to object-oriented
programming may be implemented.

470 CHAPTER 12. DATABASE SYSTEMS

In the following section we will consider the first question. The second question is
analyzed in detail in Section 12.5.

12.4 Data Structure

In general, data can be stored in databases either in unformatted (unstructured)
form or in formatted (structured) form. Unformatted or unstructured data are pre-
sented in a unit where the content cannot be retrieved by accessing any structural
detail. For example, a data description such as “Mr. Clemens Engler is a student
in the eighth term” cannot be accessed by any structural detail.

Formatted or structured data are stored in variables, fields or attributes with cor-
responding values. Here, the particular data parts are characterized according to
their properties. For example, a data description such as:

A.Student.Surname = Engler
A.Student.GivenName = Clemens

A.Term = 8

can be accessed by structural details (student’s given name, surname or term).

Additionally, multimedia data can be stored in databases as raw, registering and
descriptive data types.

12.4.1 Raw Data

An uncompressed image consists of a set of individual pixels. The pixels represent
raw data in the form of bytes and bits. They create the unformatted information
units, which represent a long sequence or set of symbols, pixels, sample values, etc.

12.4. DATA STRUCTURE 471
12.4.2 Registering Data

To retrieve and correctly interpret such an image, the details of the coding and the
size of the image must be known. Let us assume that each pixel in an image is
encoded with eight bits for the lumimance and both chrominance difference signals.
The resolution will be 1,024 x 1,024 pixels. These registering data are necessary to
provide a correct interpretation of the raw data. Traditional DBMSs usually know
only numbers and characters, which have fixed semantics; therefore, no additional
description is required. Image, audio and video data allow-for a number of attributes
during coding and structuring. Without this additional deseription, the multimedia
data could only be interpreted with difficulty, or not at all. Many components and
applications of a multimedia system assume an implicit knowledge which in indi-
vidual cases may also be sufficient, but MDBMS should be provided as a generally
accessible service for all applications and components. Therefore, it is necessary to
also handle all different formats. Moreover the semantics of the registering data
can be extended to define existing relations between data objects of one or several
media.

12.4.3 Descriptive Data

Today, the search for textual and numerical content is very effective. However,
the search for image, audio or video information is much more difficult. Therefore,
optional description (descriptive data) should be assigned to each multimedia unit.
In the case of an image, the particular scene could be described in the form of
text. These descriptive data provide additional redundant information and ease data
retrieval during later searches. Descriptive data could be presented in unstructured
or structured form.

12.4.4 Examples of Multimedia Structures

We present examples of raw, registered, and descriptive data for different media
such as text, image, video and audio.

In the case of tert, the individual forms are:

472

CHAPTER 12. DATABASE SYSTEMS

. Characters represent raw data.

The registering data describe the coding (e.g., ASCII). Additionally, a length
entry must follow or an end symbol must be defined.

The descriptive data may include information for layout and logical structuring
of the text or keywords.

Images can be stored in databases using the following forms:

1. Pixels (pixel matrix) represent raw data. A compressed image may also con-

sist of a transformed pirel set. For example, the coeflicients of the discrete
cosine transformation in two-dimensional frequency presentation represent a
transformed pirel set. A further compression of the raw data can include a set
of entropy-encoded data.

The registering data include the height and width of the picture. Additionally,
the details of coding are stored here. For example, in the case of a JPEG com-
pressed image, the mode is entered first. This may be a specific JPEG mode
based on a discrete cosine transformation. Additionally, for example, the eight
bits per sample value for image processing, the sequential image structure and
the entropy encoding scheme are defined. The tables for quantizing process
and entropy encoding must also be specified.

Examples of descriptive data are individual lines, surfaces and subjects, or sit-
uations as a whole scene (e.g., “Birthday and 1995 New Year’s Eve celebration
at Lisa’s favorite restaurant”, or

B.Reason = New Year’'s Eve / Birthday
B.Date = 12/31/95

B.Place = Favorite Restaurant
B.Name = Lisa

B.Keywordl = New Year’s Eve Celebration

A motion video sequence can have a very different set of characteristics. It consists

of the following information:

124

DATA STRUCTURE 473

. Raw data are defined in the simplest case through a sequence of pixel matrices.

Mostly through motion video coding, the redundancies over several images are
used for data reduction (intra-frame coding). so that each image does not carry
all the necessary data for decompression. Also, a variable-rate data strean can

he created.

. The registering data provide. in addition tu other information, the number

of images per second (see Chapter 6}. A data stream. coded according to
the CCITT H.261 standard. is described as being QCIF (Quarter Common
Intermediate Format) with a resolution of 177 x 144 pixels for the Inminance
component and 88 x 72 pivels for the color difference component<. The motion
video, coded aceording to MPEG-2, is deseribed by the relation between con-
secutive images; tvpes are coded {1 I-frame, 2 B-frame, 1 P-frame, 2 P-frame,
I Lframe, etc.). Random access to each individual image of the motion video

must follow.

. The descriptive data provide a scene description (e.g., “Jan’s birthday party

with his friends from kindergarten™).

Individual eudio sequences can be classified according to the following scheme:

1.

Raw data may be the digital sample values created by a simple PCM coding.
The compressed values may also be considered as raw data.

The registering data represent the properties of the audio coding. Using a
PUM coding, the sample rate, the quantization line and the-resolution of
the individual samples are the registering data. Compressed audio data can
also carry additional information used by a paraneterized decoder. Often, the
codirg information is already included in the raw data (e.g., ADPCM coding).

The descriptive data represent the content of the audio passages in a short
form. In the case of a music composition. the name of the composition, the
composer name and the name of the player can be entered. In the case of
speech, a short content description, or the whole text can be written down.

474 CHAPTER 12. DATABASE SYSTEMS
12.4.5 Comments on Data Analysis

Audio and video data are often stored in a composed, integrated form (e.g., bv using
MPEG). This guarantees a continuous data stream during the output process. The
recording can also be a combination of individual audio and video data. A hierarchy
in the media can be inserted. Hence, DBMS can address combined media in the
form of raw, registering and descriptive data.

For the application, a format-independent access is important and should be sup-
ported by a DBNLS_ Therefore, it makes sense to define access to uncompressed data
at the application interface, although the data are actually processed (e.g., stored,
transmitted) in a compressed form.

The division of data into raw, registering and descriptive data types requires strict
management during database manipulation. For this management, system support
and generation of context-dependent frames for text description should be imple-
mented. If, for example, 2 motion video of landscapes is used for a travel catalogue,
and some data already exist, the structure of the new descriptive data should be
derived from the existing descriptive data of other entries.

12.5 Operations on Data

An MDBMS must offer, for all data types presented in Section 12.4, corresponding
operations for archival and retrieval. The media-related operations will be handled
as part of or an extension of query languages (e.g., SQL). In databases, following
different classes of operations for each medium are needed: input, output, modifi-
cation, deletion, comparison and evaluation.

The input (insert/record) operation means that data will be written to the database.
In this case, the raw and registering data are always needed. The descriptive data
can be attached later. If during the input operation of motion video and audio the
length of the data is not known a priori, the MDBMS may have problems choosing
the proper server or disk.

The output (play) operation reads the raw data from the database according to the

12.5. OPERATIONS ON DATA 475

registering data. Hence, for decoding 2 JPEG coded image, the Huffman table can
be transmitted to the decoder in advance. The transmission of the raw data follows.

Modification usually considers the raw data. The modification of image data should
be done by an editor. For motion video, cutting with in/out fading is usually needed.
For audio data, in addition to in/out-fading, the volume, bass, treble and eventually
balance can also be modified. The modification attributes are stored in registering
data. Here, the attributes are defined as time-dependent functions performed during
play of data. Modification can also be understood as a data conversion from one
format to another. In this case, the registering data must be modified together with
raw data. Another variant of modification is transformation from one medium to
another, such as text-to-speech transformation. The conversion function, analogous
to an editor, should be implemented outside the MDBMS. Such a transformation
is implemented through reading of the data, externally converting it to another
medium and recording the transformed data in the database.

During the delete operation, the consistency of the data must be preserved, i.e., if
raw data of an entry are deleted, all other data types (registering and descriptive
data) related to raw data are deleted.

Many queries to the MDBMS consist of a search and retrieval of the stored data.
These queries are based on comparison information. Here, individual patierns in
the particular medium are compared with the stored raw data. This kind of search
is not very successful. Another approach uses pattern recognition where a pattern
from raw data may be stored as registering data and a comparison is based on this
pattern. The current efficiency of this approach is low for MDBMSs and is only
used for certain applications. A comparison can also be based on the corresponding
format of the descriptive data. Here, each audio sequence can be identified according
to its unambiguous name (a maximum of 16 characters) and the creation time.

Other comparisons are based on content-oriented descriptive data. For example,
the user enters the nominal phrase with a limited set of words. The MDBMS
converts this input into predicates. In this case, synonyms can be used and are
managed by the system. This concept allows for a content-related search, which
is used for images and can be ported without any difficulties to all types of media
[LM89, LM90, Mey91].

476 CHAPTER 12. DATABASE SYSTEMS
The goal of ¢valuating the raw and registering data is to generate the corresponding
descriptive data. For example, during the storage of facsimile documents, Qptical
Character Recoguition (OCR) can be used. Otherwise, in most cases, an explicit

user input is required. The results in [LM&9]. [1L.M90], [Mey91] can be used.

12.6 Integration in a Database Model

A main issue for the implementation and usage of an MDBMS is the database model.
Primarily, the data types (Section 12.4) and operations (Section 12.5} used are
important. These data types and operations can be integrated in both a relational
model and an objeci-oriented model [SZ8T].

Abstract data types of all media can be defined with descriptive attributes according
to their formats. For example, consider the attributes of uncompressed video in Table
12.1. Attributes are stored in a multimedia database and operations can retrieve

and modifv them.

Attribute Name | Attribute Type Attribute Value
height: integer; 480
width: integer; 640
encoding: uncompressed; YUV
stream encoding: | s_mode; PAL
pixel_depth: integer; {8,8,8)
rate: signed integer; 25
colormap size: integer;

| colormap: array; (...)

Cpixel: structure{ Y., V) of bits

[image: i array {...} of pixels

;Ti*dm: i timedlist of images

Table 12.1: Aftributes of uncompre sced video.

12.6. INTEGRATION IN A DATABASE MODEL 477

12.6.1 Relational Database Model

The simplest possibility to implement a multimedia database is to use the relational
database model because the attributes of different media in relational databases
are defined in advance. Hence, the attributes can specify not only text (as is done
in current database systems), but also, for example, audio or video data types.
The main advantage of this approach is its compatibility with current database
applications.

In the following paragraphs, we will analyze different types of the relational model
using an example. In this example, a relation “student” is given for the admission
of a sport institute’s students into the obligatory athletics course. A relation’s
attributes (e.g., picture, exercise devices) can be specified through different media
types (e.g., image, motion video). Further, our example database includes other

entries such as: “athletics”, “swimming” and “analysis”.

Student (Admission.Number Integer,

Name String,
Picture Image,
Exercise_Device_1 Video

Exercise_Device_2 Video)

Athletics (Admission_Number Integer,

Qualification Integer,
The_High_Jump Video,
The_Mile_Run Video)

Swimming (Admission_Number Integer,
Crawl Video)

Analysis (Qualification Integer,
Error _Pattern String,
Comment Audio)

478

CHAPTER 12. DATABASE SYSTEMS

o Type I Relational Model

In the type ! relational model, the value of a certain attribute can be fixed over
the particular set of the corresponding attribute types, e.g.. the frame rate of
motion video can be fixed.

For our example it means that when attributes such as exercise devices 1 and 2
from entry “student” are retrieved, the video will play at the fixed rate defined
by the type 1 specification.

Type 2 Relational Model

A variable number of entries can be defined through the type 2 relational
model.

In our example, the individual disciplines (such as athletics and swimming) of
each admitted student are identified through their admission numbers.

Type 3 Relational Model

In addition to the fixed values of attributes per relation and the variable
number of entries, an entry can simultaneously belong to several relations.
This property is called the type 3 relational model.

In our example, a video entry of a student performing a high jump can be
assigned to the relation “athletics” for qualificatior ourposes as well as to the
relation “analysis” for an educational application with an analysis of typical
errors in the individual sport disciplines.

12.6.2 Object-oriented Database Model

In object-oriented databases, instead of defining relations, as is the case in relational
databases, classes with objects are defined. These objects can be put in relations

via a class hierarchy. Therefore, a semantic specialization of classes and objects can

follow. For example, if we consider the above example of students from the sport
institute, the sport institute is the main class. Different kinds of sport departments
(e.g., athletics, swimming) build subclasses of the sport institute class. Students are
the objects of each subclass.

12.7. COMMENTS 479

Some MDBMSs use this approach with many different kinds of class hierarchies. As
a consequence of these many hierarchies, no generally applicable class hierarchy can
be recognized today. These systems offer good information navigation and flexible
presentation possibilities. On the other hand, in comparison to the relational model,
the important set operations for queries (e.g., get an element from a set, include an
element into a set) are incompletely supported.

12.7 Comments

MDBMS are still under development. Most MDBS systems are bound very closely to
a multimedia application or application area. An example is the current development
of MDBMS for multimedia document processing (hypertext, hypermedia). Other
application areas, such as conferencing systems, leave any consideration of MDBMS
out. Therefore, there are only few application experiences with MDBMS.

If such experiences existed, a minimal MDBMS could be defined. According to
[Loc90], such a minimal MDBMS is defined as a system which satisfies all require-
ments put on a MDBMS using the minimal knowledge about the application. This
minimal MDBMS has been, until now, unknown.

The database models presented are strongly influcnuced by the representation of un-
compressed images and content-oriented search. Development in data compression
techniques and the requirements for higher media quality will bring more frequent
use of compressed data.

Attribute types, such as image, video and audio, must be further modified and
refined. In this context, the close relation between the data units of one or different

media should be integrated.

An implementation of consistency by a transaction {Gra81] and an implementation
of composed transactions [Mos82] need to be adapted to the large amounts of data
and real-time conditions. These properties would help ensure that a transaction
does not have to start again and again. In this case, a predicate with respect to
time conditions, as an additional attribute, could be integrated into a transaction.

430 CHAPTER 12. DATABASE SYSTEMS

Research needs to be done in the area of a content-oriented search with respect to
continuous media. Queries, such as “Search for the speech probe with the children
song about ten small Indians”, or “Search for the video clip with Prince Andrew in
the Andalusian costume”, are difficult to perform. It is still unclear if a solution is
actually possible.

With respect to distributed multimedia databases and network access, integration of
multimedia communication and database technology is necessary [BCG*+90, GCBSS,
KGB89]. An extension of the Remote Database Access (RDA) for continuous data, a
distributed MDBMS and a multimedia client-server system need to be implemented.
In a client server environment, the concepts of several clients per transaction and Jor
several servers per transaction should be considered for support of cooperative mul-
timedia applications.

Today, the integration of MDBMS with an operating system is not done in the best
way. Most often, time critical data are either processed through separate exter-
nal devices, or processed with a lower quality through DBMSs. For an integrated
MDBMS, harmony with the new operating system extensions must follow.

Chapter 13

Documents, Hypertext and
MHEG

A document consists of a set of structural information that can be in different forms
of media, and during presentation can be geterated or recorded [App90}. A docu-

ment is aimed at the perception of a human, and is accessible for computer process-

ing.

13.1 Documents

A multimedia document is a document which is comprised of information coded
in at least one continuous (time-dependent) medium and in one discrete (time-
independent) mwedium. Integration of the different media is given through a close
relation between information units. This is also called synchronization. A multime-
dia document is closely related to its environment of tools, data abstractions, basic

concepts and document architecture.

Currently. continuous and discrete data are processed differently: text is processed
within an editor program as a type of a programming language (namely the Type
Character): a motion picture can be manipulated with the same editor program
only through library calls. The goal of abstracting multimedia data is to achieve

481

482 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

integrated, i.e., uniform, description and processing of all media. This reduces
the complexity of program generation and maintenance that process multimedia
data. Since Chapter 16 discusses in detail different approaches to programming
abstractions, we will not concentrate here on this issue. Abstractions of multimedia
data serve as the fundamental building block for programming different multimedia
applications, especially editors and other document processing tools.

Basic system concepts for document processing use multimedia abstractions and also
serve as concepts for the information architecture in a document. Thus, we use the
terms document architecture and information architecture interchangeably.

13.1.1 Document Architecture

Exchanging documents entails exchanging the document content as well as the doc-
ument structure. This requires that both documents have the same document archi-
tecture. The current standardized. respectively in the progress of standardization,
architectures are the Standard Generalized Markup Language (SGML) and the Open
Document Architecture (ODA). There are also proprietary document architectures,
such as DEC’s Document Confent Architecture (DCA) and IBM’s Mized Object
Document Content Architecture (MO:DCA).

Information architectures use their data abstractions and concepts. A document
architecture describes the -connections among the individual elements represented
as models (e.g., presentation model, manipulation model). The elements in the
document architecture and their relations are shown in Figure 13.1. Figure 13.2
shows a multimedia document architecture including relations between individual
discrete media units and continuous media units. '

The manipulation model describes all the operations allowed for creation, change
and deletion of multimedia information. The representation model defines: (1) the
protocols for exchanging this information among differert computers; and, (2) the
formats for storing the data. It includes the relationgbetween the individual infor-
mation elements which need to be considered during presentation. It is important to
mention that an architecture may not include all described properties, respectively
models.

13.1. DOCUMENTS 483

Presentation

Structure

Representation Model

Figure 13.1: Document architecture and its elements.

13.1.2 Manipulation of Multimedia Data

The user becomes most aware of multimedia documents through tools for manip-
ulation of multimedia data, such as editors, desktop publishing programs and other
text processing programs.

A document undergoes the process shown in Figure 13.3. The information included
in a document belongs to a certain document type, e.g., a business letter or an in-
ternal memorandum. The same document can belong to other types which mainly
influence the final representation. The transformation from the actual information
to its final representation behaves according to rules specific to the document archi-
tecture.

The processing cycles (Figure 13.3) of a traditional document and an interactive
multimedia presentation are analogous, as shown in Figure 13.4. Currently, an
author edits a document with a text editor. Thus, he or she uses the system’s
character set (e.g., ASCII) as the actual content of a document, as well as a hid-
den language available in most interactive editors for structural description (e.g.,

484 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Presentation

Synchre
nization

Representation Model

Fignre 13.2: A multimedia document architecture and its constituent efemnents,

SGML). At this point, the document exists in a processable representation. The
subsequent formatting process determines the lavout of the document. The result
is a final representation of the document. A typical example of this representation
is the typesetting language PostSeript™. The availability of hypertext and mul-
timedia technology have changed the representation of documents. Although the
processing cycle of document generation will remain the same. it is apparent that
there will be major changes in how documents are displaved. The output of inter-
active hvpermedia documents will be mostly computer-supported. Therefore, the
presentation of a document will have to be not only final, but also erecutable. While
there are a broad range of processable formats there are too few final representation
formats. It has been internationally recognized that such a final representation (ex-
change format) is very important, especially in a distributed, heterogeneous system
environment. This exchange format for interactive multimedia presentation is called
MHEG (Multimedia and Hypermedia Information Coding Fxpert Group).

Using the main concepts of hypermedia and hypertert for multimedia documents.
the following sections of this chapter present the document architectures SGML

13.2. HYPERTEXT AND HYPERMEDIA 485

Source

BPocument

\ Target

Decument

Rules _—a Processing

Target
Document

Type

Figure 13.3: Processing of a document: from the information to the presentation

and ODA. Finally, MHEG is briefly described.

13.2 Hypertext and Hypermedia

Communication reproduces knowledge stored in the human brain via several media.
Documents are one method of transmitting information. Reading a document is an
act of reconstructing knowledge. In an ideal case, knowledge transmission starts with
an author and ends with a reconstruction of the same ideas by a reader. Information
loss is minimal. Figure 13.5 shows this communication process between an author

and a reader.

Today’s ordinary documents (excluding hypermedia), with their linear form, support
neither the reconstruction of knowledge, nor simplify its reproduction. Knowledge
must be artificially serialized before the actual exchange. Hence, it is transformed
into a linear document and the structural information is integrated into the actual
content. In the case of hypertext and hypermedia, a graphical structure is possible

486 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Document
Systems

A
MIFF, SGML |

/v Document 1

format

['55&(""{‘
\ Layout
Postscript

/

Final
Form

Interactive Hyper-/
Multimedia Systems

Script/X, HyTime \

//i

\ Presentation
??7?

Figure 13.4: Problem description.

Augthor

Linenrization
——

—
——aad

==

Reader
De-
Hesearization
S

Figure 13.5: Information transmission [GS90].

in a document which may simplify the writing and reading processes.

13.2.1 Hypertext, Hypermedia and Multimedia

A book or an article on a paper has a given structure and is represented in a se-

quential form. Although it is possible to read individual paragraphs without reading

previous paragraphs, authors mostly assume a sequential reading. Therefore many
paragraphs refer to previous learning in the document. Novels, as well as movies.
for example, always assume a pure sequential reception. Scientific literature can

13.2. HYPERTEXT AND HYPERMEDIA 487 -

consist of independent chapters, although mostly a sequential reading is assumed.
Technical documentation (e.g., manuals) consists often of a collection of relatively
independent information units. A lexicon or reference book about the Airbus, for
example, is generated by several authors and always only parts are read sequen-
tially. There also exist many cross references in such documentations which lead to
multiple searches at different places for the reader. Here, an electronic help facility,
consisting of information links, can be very significant.

Figure 13.6 shows an example of such a link. The arrows point to such a relation

JAL

Figure 13.6: Hypertext data. An ezample of linking information of different media.

between the information units (LDUs). In a text (top left in the figure), a reference
to the landing properties of aircrafts is given. These properties are demonstrated
through a video sequence (bottom left in the figure). At another place in the text,
sales of landing rights for the whole USA are shown (this is visualized in the form of
a map, using graphics — bottom right in the figure). Further information about the
airlines with their landing rights can be made visible graphically through a selection
of a particular city. A special information about the nuinber of the different airplanes
sold with landing rights in Washington is shown at the top right in the figure with

488 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

a bar diagram. Internally, the diagram information is presented in table form. The
left bar points to the plane, which can be demonstrated with a video clip.

Non-linear Information Chain

Hypertext and hypermedia have as a major property a non-linear information link.
There exists not only a reading sequence, but also the reader decides on his/her
reading path. The reader can start in a lexicon with a notion hypertext, then go
through a cross reference to systems and finish with a description of AppleTalk. By
this association, through reference links, the author of the information determines
the actual links.

As another example, let us consider this document (our multimedia book) about
multimedia systems. The structure of this work consists, besides the introductory
and closing chapters (first impression) of a set of equivalent chapters. Actually,
Chapter 2 has a more important position: it should be read before any of the re-
maining chapters. The reason is that it includes some fundamentals to explain
common notions used in the other chapters. All other chapters are relatively inde-
pendent and the reader can determine his/her own path. The structure is a tree
where the reading path in this linear document is explained verbally and not through
the structure. A hypertext structure is a graph, consisting of nodes and edges. The
references to other chapters and literature citations are, for example, such pointers
which build a tree-similar document to a graph.

e The nodes are the actual information units. They are, for example, the text
elements, individual graphics, audio or video LDUs. The information units
are shown at the user interface mostly in their own windows.

¢ The edges provide links to other information units. They are usually called
pointers or links. A pointer is mostly a directed edge and includes its own
information too.

13.2. HYPERTEXT AND HYPERMEDIA 489
Anchor

The forward movement in linear sorted documents is called a navigation through
the graph. At the user interface, the origin of pointers must be marked, so that the
user can move to a further information unit. This origin of a pointer is called an
anchor. A main factor of the user interface is the concept of the anchor: how can
the anchor be represented properly?

o A media-independent representation can happen through the selection of gen-
eral graphical elements, such as buttons. In such an element, information
about the destination node should be included. If the destination node is a
text, a short, descriptive text of the content can be represented. In the case
of an image, the image content can appear in minimized form on the screen.
A visual representation of the video content can follow in form of a moving
icon (Micon). This is a minimized motion picture which represents a charac-
teristical portion of the video sequence of the destination node (MIT Project
Elastic Charles [Bra87]). If the content of the destination node consists of
audio information, a visual representation of the aundio content must follow.
For example, in the case of a music passage, a picture of the composer could
be displayed.

e In a test, individual words, paragraphs or text sections of different length can
be used for representation. The positioning of the pointer to the marked area .
and double clicking in this area leads to a display of the destination node,
connected with the clicked information (e.g., see Figure 13.11).

¢ In images, specific graphical objects or simply areas are defined as selection
objects. A specific marking can occur through a color or stripe.

e In a motion video, media-independent representations of the anchor are pre-
ferred. There can also be time-changing areas used. Mostly, no spatial selec-
tion occurs and the particular shown image is conclusive. A timely selection
is supported.

e With respect to audio, a media-independent solution is used. In this case, a
short, descriptive text or an image of the size of an icon is preferably shown.

490 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Figure 13.7 emphasizes the relation among multimedia, hypertext and hypermedia.

Figure 13.7: The hypertezt, hypermedia and multimedia relationship.

Hypertext System

A hypertext system is mainly determined through non-linear links of information.
Pointers connect the nodes. The data of different nodes can be represented with
one or several media types. In a pure text system, only text parts are connected.
We understand Aypertezf as an information object which includes links to several
media.

Multimedia System

A multimedia system contains, according to Section 2.3, information which is coded
at least in a continuous and discrete medium.

For example, if only links to text data are present, then this is not a multimedia
system. It is a hypertezxt. A video conference, with simultaneous transmission of
text and graphics, generated by a document processing program, is a multimedia
application. Although it does not have any relation to hypertext and hypermedia.

Hypermedia System

As Figure 13.7 shows, a hypermedia system includes the non-linear information links
of hypertext systems and the continuous and discrete media of multimedia systems.

13.2. HYPERTEXT AND HYPERMEDIA 491

For example, if a non-linear link consists of text and video data, then this is a
hypermedia, multimedia and hypertext system.

As is often the case, we will not use the notion hypermedia in its strongest sense. If
not explicitly specified, hAypertezrt and hypermedia are used interchangeably.

There have been many international conferences covering this area since the late
1980s: Hypertext’87, Hypertext’89, etc. A good overview of articles chosen from
the first Hypertext’87 conference is in [ACM88]. ECHT’ 90 was the first European
Conference on Hypertext held in Paris. There exists a large number of conferences
and workshops, in addition to these main international events, at the regional and
national levels.

13.2.2 Hypermedia Systems: An Example

Actually, it is not easy to present on paper a real hypermedia system. Therefore, it
is urgently recommended to the reader to work with such a system (e.g., the NCSA
Mosaic© tool for viewing hypermedia documents written in HTML - an application
of SGML) to get a better understanding of the properties and the advantages and
disadvantages.

The following example of a lecture “hypertext”, as a hypermedia document, is similar
to [Nie90b, Nie90a). It describes the part of a typical manipulation process with a
hypermedia system.

First Screen

A possibly natural environment is created for the reader of a hypertext to improvise
the usual setup (Figure 13.8). Therefore, at the beginning of the lecture, a book is
shown, which can be opened by clicking on it. The title of the document appears
on the cover.

Additional information can also be shown, such as when the reader last opened the
book. The same information (after the book was opened} is only shown with respect
to the individual nodes.

492 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Lecture
HYPERTEXT

Iigure 13.8: The first screen of a hypermedia lecture.

A content-sensitive help function (with respect to the particular state of the system)
can be made available. The help function describes the actual state and the impli-
cations of possible interactions with the user. Further, it allows for the possibility to
access general help information. An application of hypertext, which is very popular,
consists of such system-wide help functions. Here, the text medium is most often

used.

Second Screen

Upon opening the book (Figure 13.9), the reader is presented with an overview
of the document in the form of a two-dimensional content directory. There is no
first chapter. Besides the linking nodes with edges (i.e., the information units with
pointers), the physical ordering of the nodes among each other can provide additional
information. Hence, chapters that are closely related to each other can be presented
on the screen near each other. The author can express semantic relations through
the layout. For example, if a document describes ODA, SGML and hypertext,

13.2. HYPERTEXT AND HYPERMEDIA 493

| Research Areas |
Lecture Hypertext

Applications Bibliography

Figure 13.9: The second screen - first-level content directory.

(1} ODA and SGML can be placed close together during the presentation of both
document architectures, and {2) hypertezt can be used in both architectures.

The content directory in its most general form is often represented by a tree graph.
The nodes that have already been visited can be marked as such, which simplifies
navigation. When clicking at a node, only a paragraph is shown because of overview
reasons.

Or one hand, if too many nodes are linked in the content directory, the reader loses
the comprehensive view. Given a 147 screen with VGA resolution and a content
directory in form of a tree, a practical number of displayed nodes is 30. It is assumed
that all nodes are simultaneously presented. On the other hand, if too few nodes are
shown (e.g., only three), then this may lead to a large number of levels which will
cause a fragmented perspective. The optimal number of presented nodes depends
on the screen size, the number of pointers and the degree of possible levels. Many
nodes can be presented as trees, few nodes can be part of complex graphs. Mostly,
content directories are trees. The content of the particular destination node refines
the content directory. In our example {Figure 13.9), Lecture Hypertezt is divided

494 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

into four sections: Applications, Systems, Research Areas and Bibliography. The
reader selects Systems here.

Third Screen

The structure of the four sections on the third screen can be presented in a refined
version. The four sections can be seen as buttons which the user can select.

The following Systems subtopics are offered: Requirements, User Interface Design
and a Classification (Figure 13.10). In the presentation (Figure 13.10), a2 multilevel

| User Interface Design |

Figure 13.10: The third screen — second-level content directory.

content directory could be hidden, but we assume this is not the case. The user may
get information about the user interface and select this information unit. Here, the
reader selects User Interface Design.

1.‘j.l2. HYPERTEXT AND HYPERMEDIA 495

Fourth Screen

Typical information about the medium text, used in User Interface Design, is pre-
sented on the fourth screen (Figure 13.11). In addition, the book’s content directory

User Interface Design

Research showed that the users of a
Hypertext system often did not know
at which location in the system they
were situated.

To provide a proper

to the user within the system,

the following functions were implemented:

Figure 13.11: The fourth screen — details about User Interface Design.

and the second level are visible. The selected path Systems/User Interface Design
is specially marked. This helps the reader to navigate through the document. Text
is displayed on one side of the screen imitating an opened book. Some parts of the
screen are marked as anchors: Orientation, Overview Diagrams, History Files and
Backtracking. Each of these anchors points to further information. This can lead to
faster pacing without absorbing previous information. Further information about
the topic Orientation is available as a motion video. The user clicks on the anchor
Orientation (Figure 13.11) and the screen shown in Figure 13.12 appears.

496 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG
Fifth Screen

The fifth screen (Figure 13.12) leads the reader to a video clip showing examples
of Orientation. Here, there may also be an additional program for motion picture

Figure 13.12: The fifth screen - details about Orientation.

control. This program provides functions similar to a video recorder, meaning the
video can be moved forward and backward at different speeds, as well as stopped,
and a still image can be displayed. Additionally, certain positions in the video clip
(e.g., the beginning of the clip) should be made accessible.

The selection of the symbol at the lower right corner leads the reader back to the
preceding node, in this case, to the User Interface Design screen (Figure 13.13).

Sixth Screen

The sixth screen is a return to the User Interface Design screen. The user now selects
History Files. The cross-bar under the opened book is a scroll-bar. It indicates that
the displayed page represents only approximately 25% of all the information stored

13.2. HYPERTEXT AND HYPERMEDIA 497

User Interface Design

Research showed that the users of 2
Hypertext system often did not know
at which Jocation in the document they
were located.

To provide a proper to the

user within the system, the following

i 4 tod «

were §

1y

- Display of (Querview Disgrams)

- Generatlon of [History Files)

(Backtracking)

Figure 13.13: Hypermedia example: sizth screen — details about the user interface.

in the node about User Inferface Design. Additional pages can be viewed by rolling
the roll-bar or selection of the pointer.

Seventh Screen

The History Files screen (Figure 13.14) shows the particular nodes last read. Specif-
ically, the reader read the cover page 5 minutes ago, the overview about the lecture
Hypertext 2 minutes ago, the chapter Systems 4 minutes ago, and the User Inter-
face Design in the chapter systems 2 minutes ago. This history list shows all of the
traversed nodes. Each node can be accessed again by selecting an element in the
list.

Often, a graphical assignment is better to keep in mind than a textual description.
The user, for example, may remember that there is a picture where a red hat is
placed in the upper left corner. Alternatively, a display of the traversed nodes may
help the reader to find his/her way through the document. This is not a very good
solution, however if many screens have been involved.

498 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Click on the name of an article to get back to it

HISTORY LIST

Book cover of the lecture HYPERTEXT ’
Overview of the lecture HYPERTEXT

Chapter Crverview - Systems

User Interface Design in chapter Systems

4

Figure 13.14: The Seventh screen - history of previously presented information.

With this short, virtual navigation through a hypertext lecture, some characteristic
properties of a hypertext system have been shown. Various systems use different
concepts, functions and layout of the user interface.

Further Application Areas

A lecture is not the only respectively typical application area. The following areas
have shown to be useful domains for hypertext systems:

o In some classical computer applications, hypertext is already state-of-the-art;
especially, the help function.

o In the area of commercial applications, repair and operational manuals can be
found. Here, different media are used. This technology leads to a replacement
of a microfilm which can be found by the distribution of replacement parts. A
repair instruction can be presented much more flexibly using motion pictures.
Here, an interaction in the form of a slow forward and backward rewinding

13.2. HYPERTEXT AND HYPERMEDIA 499

is expected. Exhibition and product catalogues create, together with other
applications from the advertisement branch, the basis for a number of diverse
applications.

o The organization of ideas, brainstorming and the generation of scientific doc-
uments count, for example, as intellectual applications. Here, the structure
of the document is not clear at the beginning of its generation. During the
intellectual process of writing a document, the structure gets clarified.

¢ Education and tutorials can be improved through the input of continuous
media. Foreign language education requires the audio medium. In museums,
further explanation of exhibition pieces can be offered to visitors using audio
and video.

o Tourist information systems and interactive science-fiction movies count on the
areas of entertainment and free-time activities. A new generation of computer
games is going to become available.

Hypertext provides advantages whenever the document for a specific application
does not require strict linear structure. However, the authors’ experiences show
that hypertext will not replace all conventional print material.

13.2.3 History

The history of hypertext goes quite far back, although it has been only recently
(in the last couple of years) that hypertext systems came on the market. Also, the
integration of continuous media was demonstrated in laboratories several years ago.
In the following paragraph, we will give a short overview of hypermedia/hypertext
history according to [Nie90b)].

Vannever Bush is the originator of the main hypertext concept, the linked informa-
tion structure. He described the first hypertext system Memez (MEMory EXten-
der). Memex was never implemented, it exists only on the paper. Vannever Bush
developed the ideas for this topic in 1932. He published the first descriptive article
as We May Think in 1945.

500 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Let us imagine all information in the form of microfilm being placed on a table.
With proper projectors, areas could be displayed in similar form as using X Window
System™. Here, an associative indezis generated which links the different microfilm
areas together (these are the pointers).

Doug Englebart developed a project to augment the human capability Augment at
the Stanford Research Institute (SRI) 1962-1976. One part of it is NLS (oN Line
System), which has hypertext properties. NLS served as joint document storage for
all created documents during this project. All scientists working on this project used
it with its possibilities of pointers. At the end, there were approximately 100,000
entries.

Ted Nelson used the notion Hypertezt for the first time in 1965. In his system
Xanadu, all information which human beings described at any time, was contained.
His concepts described the access to local, as well as to remote data. Xanadu was
not implemented with his global information content until now.

Since the middle of the 1960s, work on hypertext systems has been going on at
Brown University, Providence, RIL. In 1967, the Hypertext Editing System was devel-
oped under the leadership of Andries van Dam. This was the first run-able hypertext
system. It needed 120-Kbyte main memory of a small IBM /360 mainframe com-
puter. It was sold and used for the documentation of the Apollo mission. The
successor project was FRESS (File Retrieval and Editing SyStem) in 1968. Both
systems linked documents through pointers, the user interface was implemented
through text. At Brown University from this time, successful research in the area
of hypertext/hypermedia has continued.

The Aspen Movie Map is probably the first important hypermedia system which
supports continuous media too. It was developed at the MIT Architecture Machine.
Group under the intensive cooperation of Andrew Lippman. This group was built
up later on with other scientists and was known as the MIT Media Lab [Bra87).
With this application, a virtual drive through the city Aspen (Colorado) could be
followed on the computer screen. The user could move in all four geographical
directions as s/he desired. A joystick served as an input of the direction. The
technique consisted of a large set of individual images which were stored on a video
disk. For this purpose, four cameras were installed on a pick-up with the angle of

13.2. HYPERTEXT AND HYPERMEDIA 501

90° to each other {with the view: front, back, right, left). The car drove through all
streets of the city and took one image every three meters. The images were linked
through implicit pointers: therefore, a drive through the city could be simulated.
The drive was simulated with a maximal two images per second; therefore, a speed
of approximately 110 km/h could be achieved. The display occurred through two
screens: the first screen displayed the picture of the street and the second screen
showed a street map with the actual position.

Successor projects concentrated on the joint usage of video, individual images and
text for bike and car repair-manuals.

Until now, all hypertext systems mentioned were not developed as products and
seldom were used outside of their research groups. In 1982, Symbolics started devel-
opment of the Symbolics Document Ezaminer. It was ready as the first hypertext
product in 1985. Its main application was the documentation of the Symbolics
Workstation, which was comprised of about 8,000 pages. It contained approxi-
mately 10,000 nodes and 23,000 pointers. Also, the metaphor a book on the screen
was used and an emphasis was put on a simple user interface.

Since 1985, many hypertext systems have been announced and established on the
market. NoteCards from Xerox and Intermedia from Brown University started as
research projects and ended up as products. The Guide, implemented by Office
Workstation Limited, started as product development. It was the first product based .
on mini computers (1986). In 1987, the Apple company presented the HyperCard. It
was installed for free on all Macintosh computers and was therefore widely available.

Concepts
Hypertext systems differ from each other in their fundamental concepts:

o [naspecific systems were not developed for any specific application. They are
determined to be used generally for the generation and reading of hypertext
documents. The Apple (HyperCard) product is an example.

o Application-specific systems were developed for determined usage. For exam-
ple, gIBIS gives explanations for political discussions. It is meant to be a

502 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

decision help. In gIBIS, three special nodes and nine different pointer types
exist [CB88|.

13.2.4 Systems: Architecture, Nodes and Pointers
Architecture

The architecture of a hypertext system can be divided into three layers with different
functionalities [CG8T]:

o Presentation Layer

At the upper layer, the presentation layer, all functions connected to the user
interface are embedded. Here, nodes and pointers are mapped to the user
interface. At the user interface, one or several parts of the document are
visualized. This layer determines, based on the given structure and user’s
desired display, which data are presented and how they are presented. This
layer takes over control of all inputs.

e Hypertext Abstract Machine

The Hypertezt Abstract Machine (HAM) is placed between the presentation
and storage layers. It can expect from the underlying layer database functions
for storage of multimedia data in a distributed environment. It does not have
to consider input and output of the upper layer. HAM knows the structure
of the document, it has the knowledge about the pointers and its attributes.
The data structure, respectively a document architecture, is constructed for
the management of the document. This layer has the least system dependency
in comparison to the other two layers. Therefore, it is the most suitable layer
for standardization [Nie90b].

e Storage Layer

The storage layer (also called the database layer) is the lowest layer. All
functions connected with the storage of data, i.e., secondary storage manage-
ment, belong to this layer. The specific properties of the different discrete
and continuous media need to be considered. Functionalities from traditional

13.2. HYPERTEXT AND HYPERMEDIA 503

database systems are expected, such as persistence (data persist through pro-
grams and processes), multi-user operations (synchronization, locks, ...) and
the restoration of data after a failure (transaction). The nodes and pointers
of a hypertext document are processed as data objects without any special
semantics.

Unfortunately, in most current implementation, there is no clear division between
the different layers. The reasons are: shorter development time, efficient implemen-
tations and currently an incomplete, respectively unavailable general multimedia
interface for the lowest layer.

Nodes

A node is an information unit (LDU) in a hypertext document. The main classifi-
cation criterion of different realizations is the maximal stored data amount in one
node:

¢ The maximal stored data amount can be limited and mapped onto the screen
size. The metaphor of a note card, respectively a frame, was introduced here
(e.g., HyperCard). A video clip and audio passage could be limited to the
duration of, for example, 20 seconds.

An author is forced eventually to distribute logical connected text content to
several cards, although it is not desired. Applying it to video clips and audio
passages, it would mean that the close interconnection among the distributed
sequences could get lost easily. An advantage is the overview.

* Window-based systems with an unlimited data amount per node are the al-
ternative. Forward and backward scrolling of pages is offered analogous to
other windows at the user interface. Intermedia is such a system. Here, at
every node the amount of data. coded as continuous media, is not limited (in
principle) with respect to its duration.

Therefore. individual nodes can include a very diffetent length. although at

first they may appear equal. Twe different methods at the user interface are
used for the presentation of further informaiion: Either it is switched between

504 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

the nodes, or scrolling is used in one node with the usual mechanisms known
in window systems.

A secondary criterion applies to the time point of information generation. Usually,
the author specifies the whole content of the nodes during the generation of the
document. Alternatively, the author can generate information according to his/her
previous input during the presentation time. This approach allows the author to
include, for example, information about a company, also a pointer, to the actual
course of the company’s stocks on the New York stock exchange. This information
can be requested automatically through the videotert service and presented as part
of the hypertext document.

Pointers

Pointers are the edges of a hypertext graph. Hypertext systems are classified ac-
cording to different criteria with respect to edges. As a first question, one can ask:
Which informalion includes a pointer?

e Simple pointers link two nodes of the graph without containing any further
information. They are visible only through the relation between the nodes.

e Typed pointers include, in addition to the link between two nodes, further
information. Each pointer gets a label. Through this label, commentaries to
the particular label are possible (e.g., author and creation date).

One can use further semantics. For example, in the case of an educational
unit, the continuation of reading further details could depend on the resuit
of an exam testing the previous details. The pointers then include a formula
to activate the further reading. The formula is dependent on the result of
the test. Also, access rights can be controlled through pointers. Another
possibility consists of assigning types to pointers according to their properties.
For example, it can be used to differentiate between the relations destination
node is an example and destination node is a detail. These different semantics
can also be expressed through different representations of the anchor at the
user interface.

13.2. HYPERTEXT AND HYPERMEDIA 505

Another property of the pointers is connected to the question: What does the pointer
mean? Often, pointers with very different meanings are used together. This usage
complicates the understanding. The author of a hypertext should know about this
problem and use unambiguous pointers. The following relations can be expressed
through pointers:

e To be: A is part of B. This sentence represents a set relation.
e To present: A is an example of B, A demonstrated B.

o To influence: A causes B, B is a result of A. Consequences from a behavior
can be described more closely.

e To need or to be needed: A needs B, Bis needed by A. This relation expresses
a necessity.

e To own: A has B, A is associated with B. Here, ownership is expressed.

o To include: A includes B, A consists of B, A occurs in B. An inclusion relation
is expressed in different meanings.

o To be similar: A is similar to B, A is different from B, A replaces B, A is the
alternative to B. Using this relation, similarities can be expressed.

Another basic property of pointers is described with the question: Who is responsible
for the pointer specification? There are two possibilities:

o Implicit Pointers

A relation between nodes can be established automatically by a hypertext
system. The author determines the algorithm according to which pointers are
created. The system Intermedia automatically generates all pointers which
belong to one index. A similar approach can be taken by lexicons. Query
references are done automatically using main notjons of an entry.

o Ezplicit Pointers

The author creates all links by him/herself.

506 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

A pointer can be created at different times. The question follows: When is the
destination of a pointer specified?

o In the classical case, the pointer is created during the generation of a hyper-
text document, and hereby the origin of the destination node is determined.
The author determines explicitly the links of the information units during
document processing.

¢ A destination node can be determined first by using the pointer, i.e., during
reading. The author specifies an algorithm for the creation of the pointers,
but they are determined first during the reading depending on the context.
The system computes the destination node.

An example is a travel plan which shows the trains to one specific destination
station. A pointer to the next train depends on actual time. This exam-
ple comes from the information system to the city Glasgow Glasgow Online
[Har89].

In the most systems, a pointer has one source and one destination node. One can
also ask the questions: Which direction has a pointer? and What is the number of
oulgoing pointers?

The direction is mostly unidirectional. Backtracking is supported by the system
itself. Hence, the path always leads back to the source. The alternative would be
to have bidirectional pointers, but then the anchor, as well as the destination node,
would have to be specially marked. Introducing bidirectional pointers, it is possible
to have multiple references from several nodes to the same destination node. Hence,
these kinds of pointers must be marked at the destination node and a further choice
-criterion must exist. Most systems support unidirectional pointers with only one
destination node. It is easier to understand and generate.

The last question is connected to the form of an anchor at the user interface: How
is the pointer represented? Section 13.2.1 shows different possibilities.

13.2. HYPERTEXT AND HYPERMEDIA 507

Tools

A hypertext system consists of several necessary tools. Editor(s) process information
represented in different media. Beside this, the generation, management, editing and
deletion of pointers are supported.

Search tools allow the search of desired information. Also, different media need to
be considered.

Browser allows a shortened but clear representation of the nodes and edges. The
nodes are described media-dependently. The structure is presented to the user
mostly in a graphical representation. Often, only the previously read text or relevant
information can be displayed.

During the navigation through a document, a proper support of the phenomena
Getting Lost in the Hyperspace is needed. A backtracking and clear representation
of the whole structure with respect to the actual position should be available.

13.2.5 Some Final Comments about Hypertext Systems

The ordering during a reading of a hypertext document should be pre-specified
with respect to the context and reader’s interest. Therefore, the structure of the
document can change depending on the context [Hof91].

For example, a textbook about the esophagus can offer to a medical student in
his/her first semester an overview of the organ’s functionality. Only a limited set
of nodes are presented. The most pointers build a tree with a suggested path. A
navigation through this document turns out to be simple. In the following semesters,
the students are lead to specific topics in the surgery area. Using text, graphics,
video and audio, different possibilities of surgical procedures can be presented. The
hypertext document includes in this context, in addition to the fundamental notions,
a detailed description of the surgery. Further sections in this document discuss
research aspects. References point to a number of other articles, and also current
unsolved research aspects are shown. The user has the possibility of navigating
through the whole document.

508 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

The most current hypertext systems do not allow any references to nodes outside
of their internal data structure. For example, shared electronic letters cannot be
stored as documents in one hypertext system, and simultaneously sent through
another mailing program. Open solutions would be réquired in this case to support
links between information units of different hypertext applications. This requires
standardized exchange formats and protocols.

A hypertext document is stored mostly on one computer. In a distributed envi-
ronment, information units can be located on different computers. The pointers
go beyond the computer boundaries. According to the presented architecture, the
storage layer would be mostly affected.

Further interesting development and research projects refer to the following aspects
and questions:

¢ Size and concept of the information units.
(What size is the optimal size? Which factors does this specification depend
on?)

e Support of distributed documents by migration of information and/or the
reorganization of networks.
(How can a document be preserved with respect to its remotely stored con-
tent?)

¢ Version management.
(Which elements should comply with version management? What should this
management look like?)

¢ Authorization and access rights.
{Which elements should be subject to an authorization and what should their
access rights be?)

e Cooperative work, joint document processing.

(Which accesses should be locked? How is such a management implemented?)

e Virtual views onto hypermedia documents.

13.2. HYPERTEXT AND HYPERMEDIA 509

(What does the virtual view determine? How are the virtual views managed?)

Concluding, a short evaluation of the hypertext /hypermedia properties is given. A
part of this evaluation is based on personal experiences of the authors, further ideas
come from discussion with experts. Many aspects, which are visible at the beginning
of working with such systems, are mostly positive. Operation of most systems can
be learned quite easily without manual. The user knows quickly and effectively how
to find the desired information and how to manipulate all data.

Many of these enumerated properties are system-dependent, but most hypertext
systems show the named properties. The hypertext documents themselves are very
different in nature. Some are structured clearly and easy to read, others are not
structured properly, hence they are difficult to read.

Hypermedia integrates diverse media in a very elegant and simple fashion. Each
relation between information units is implemented with pointers. Some systems
also support the joint management of information among several persons. This
technique has some properties which need to be critically evaluated. The most well-
known effect is Getting Lost in the Hyperspace. While reading such a document, the
perspective and context can get lost. Hypertext documents can easily become so
called spaghetti books because of many pointers with different meanings. A hypertext
document is difficult to bring into paper form without any information loss. Hence,
even without audio and video information, the reader needs a computer. Some
systems use their own window systems. There is a lack of established standards for
information exchange among current hypertext systems.

Different task forces work on standards for hypermedia. Extensions of document
architectures ODA and SGML include hypertext techniques. They support a data
exchange of hypertext-like documents in a heterogeneous environment.

Further activities are embedded in ISO/IEC JTC1 SC2/WG12 Multimedia and Hy-
permedia Information Coding Expert Group (MHEG). This group works on the coded
representation of multimedia and hypermedia information [MHE93].

The ANSI group X2V1.8M represents the Music [nformation Processing Standards
(MIPS) Committee. This committee works on HyTime with respect to hypertext
and the Standard Music Description Language (SMDL}.

510 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

In summary, hypertext is not suitable for all kinds of documents and applications.
This technique is very good with lexicons. The information units can be linked to
each other through references (pointers). In comparison to an access and search in
a book, the usage of hypertext system makes finding information faster.

Video and audio can be included in such a lexicon easily. For example, passages
from music or animal voices can be stored under a certain entry’s explanation. Video
allows a short representation of typical movement processes as part of alexicon entry.

Another area of using hypermedia is education and tutorials. Coursework may
be supported by audio-visual means. These means can be used according to the
learning behavior of the tndividual participants. For the instructors, the hypertext
research works toward a didactical support for course design. For example, such a
system was developed at the University of Karlsruhe [Mue89].

13.3 Document Architecture SGML

The Standard Generalized Markup Language (SGML) [Gol91b], [Org86) was sup-
ported mostly by American publishers. Authors prepare the text, i.e., the content.
They specify in a uniform way the title. tables, etc., without a description of the
actual representation (e.g., script type and line distance), The publisher specifies
the resulting layout.

The basic idea is that the author uses tags for marking certain text parts. SGML
determines the form of tags. but it does not specify their location or meaning. User
groups agree on the meaning of the tags. SGML makes a frame available with which
the user specifies the syntax description in an object-specific system. Here, classes
and objects, hierarchies of classes and objects, inheritance and the link to methods
(processing instructions) can be used by the specification. SGML specifies the syn-
tax, but not the semantics. For example,

<title>Multimedia-Systems</title>

<author>Felix Gatou</author>

13.3. DOCUMENT ARCHITECTURE SGML 511

<side>IBM</side>

<summwary>This exceptional paper from Peter ...

This example shows an application of SGML in a text document.

13.3.1 Some Details

Figure 13.15 shows the processing of an SGML document. It is divided into two

Generic Mark-up
Definition

(Ducument Type
Reference)

SGML
Rules

User Group
Specific Definitions

Semantics of
Attributes

Figure 13.15: SGML: Documnent processing - from the information to the presenta-
lion.

processes. Only the formatter knows the meaning of the tag and it transforms the
document into a formatted document. The parser uses the tags, occurring in the
document, in combination with the corresponding document type. Specification
of the document structure is done with tags. Here, parts of the layout are linked
together. This is based on the joint context between the originator of the document
and the formatter process. It is not defined through SGML.

512 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Tags are divided into different categories:

o The descriptive markup (tags) describes the actual structure always in the
form:

<start-tag> respectively alsoc </end-tag>
An example is the definition of a paragraph at its beginning:

<paragraph> The text of the paragraph follows ..

e The entity reference provides connection to another element. This element
replaces the entity reference. This can be understood also as an abbreviation
to which the actual content can be copied later at the corresponding place.
The following example shows entity reference in a mathematical context:

ksquare x should be z?

o The markup declarations define the elements to which an entity reference
refers. In our example of squaring a variable x, square is defined as:

< 'ELEMENT square (...)>

A markup declaration can be used to define rules for the structure (the classes).
The following example illustrates the construction of an article paper:

< 'ELEMENT paper (preamble, body, postamble)>

< 'ELEMENT preamble (title, author, side)>

13.3. DOCUMENT ARCHITECTURE SGML 513

<VELEMENT title (#CDATA)> -- character data

<VELEMENT body (...)>

 Instructions for other programs in a text are entered through processing in-
structions. They can be meant, for example, for the formatter. Using process-
ing instructions, different media can be inserted.

SGML defines a syntax for tags through a grammar which needs to be followed.
SGML does not define the semantics of these tags.

The information or document architecture of SGML is shown in Figure 13.16. SGML

)

Structure

Representation model
Murk-up Tags

Figure 13.16: SGML: Document architecture - emphasis on the representation
model.

with its tags possesses a representation model. Objects, classes and inheritance can
be used for the definition of the structure.

514 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

13.3.2 SGML and Multimedia

Multimedia date are supported in the SGML standard only in the form of graph-
ics. A graphical image as a CGM (Computer Graphics Metafile) is embedded in an
SGML document. The standard does not refer to other media [Org86).

< tATTLIST video id ID #IMPLIED>

<!'ATTLIST video synch synch #IMPLIED>

< 'ELEMENT videg (audio, movpic)>

< !ELEMENT audio (#NDATA)> -- non-text media

< !ELEMENT movpic (#NDATA)> -- non-text media

<'ELEMENT story (preamble, body, postamble)> :

A link to concrete data can be specified through #NDATA. The data are stored
mostly externally in a separate file.

The above example shows the definition of video which consists of audio and motion
pictures,

Multimedia information units must be presented properly. The synchronization
between the components is very important here. HyTime [Gol91a] and MHEG
[MHE93] work on these issues. :

13.3. DOCUMENT ARCHITECTURE SGML 515

13.3.3 Closing Comments about SGML

A standardized document exchange is necessary with respect to the communication.
Sender (writer) and receiver (reader) can be distributed in time, as well as in space.
Often, documents are processed automatically. This requires a joint context. The
syntax is transmitted and the semantics must be discussed in SGML separately.
The Decument Type Definitions form the basis for these discussion,

SGML as a standard will stay in its current form [Org86], but extensions(additions)
are also worked out. A standardized layout semantics is necessary. This wiil sim-
plify interactions of user groups. The Document Style Semantics and Specification
Language (DSSSL) is such an extension to the standard. Based on PostScript, a
Standard Page Description Language (SPDL} is specified.

With respect to multimedia, pointers are included as non-readable. An extension
for the description of music represents Standard Music Description language(SMDL)
and HyTime.

Another application conforming to International Standard ISO 887% - SGML —is the
HyperTezt Markup Language (HTML). HTML is a mark-up language for hypertext
which is understood by all WWW (World Wide Web) clients. HTML is persuaded
to become a standard for interchange of hypertext information on the network. It is
proposed to be registered as a MIME (RFC1521) content type. HTML can be used
to represent:

¢ Hypertext news, mail, online documentation and collaborative hypermedia.

Menus of options.

Database query results.

Simple structured documents with in-lined graphics.

Hypertext views of existing bodies of information.

516 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

13.4 Document Architecture ODA

The Open Document Architecture (ODA) [Org89] was initially called the Gffice Doc-
ument Architecture because it supports mostly office-oriented applications. The
main goal of this document architecture is to support the exchange, processing and
presentation of documents in open systems. ODA has been endorsed mainly by the
computer industry, especially in Europe.

13.4.1 Some Details on ODA

The main property of ODA is the distinction among content, logical structure and
layout structure. This is in contrast to SGML where only a logical structure and the
contents are defined. ODA also defines semantics. Figure 13.17 shows these three
aspects linked to a document. One can imagine these aspects as three orthogonal

Logical

Layout
Structure

Structure

> (I

Content

Figure 13.17: ODA: Content, layout and logical view.

views of the same document. Each of these views represent one aspect, together we
get the actual document.

13.4. DOCUMENT ARCHITECTURE ODA 517

Content Portions

The content of the document consists of Content Portions. These can be manipu-
lated according to the corresponding medium.

A content architecture describes for each medium: (1) the specification of the ele-
ments, {2) the possible access functions and, (3) the data coding. Individual elements
are the Logical Data Units {(LDUs), which are determined for each medium. The
access functions serve for the manipulation of individual elements. The coding of
the data determines the mapping with respect to bits and bytes.

ODA has content architectures for media text, geometrical graphics and raster graph-
ics. Contents of the medium text are defined through the Character Content Archi-
tecture. The Geometric Graphics Content Architecture allows a content description
of still images. It also takes into account individual graphical objects. This is similar
to CGM. Pixel-oriented still images are described through Raster Graphics Content
Architecture. It can be a bitmap as well as a facsimile.

Layout Structure and Logical Structure

The structure and presentation models describe - according to the information ar-
chitecture - the cooperation of information units. These kinds of meta information
distinguish layout and logical structure.

The layout structure specifies mainly the representation of a document. It is related
to a two dimensional representation with respect to a screen or paper. The presenta-
tion model is a tree. Figure 13.18 shows the content of a document together with the
layout structure. Using frames the position and size of individual layout elements
is established. For example, the page size and type style are also determined.

The logical structure includes the partitioning of the content as shown in Figure
13.19. Here, paragraphs and individual headings are specified according to the tree
structure. Lists with their entries are defined (example) as:

paper = preamble body postamble

018 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG
Layout-Structure erer—— Content
Generic-Specific [GrapheObjest e Formstited Text
Header Frame 4 Graphic Object

| THE N-TIMES TRANSFORM C '
iy g 81 N Somma o s prciis - -
{ changed coples of 5 graphic shject. Figure 45 shows H
[e e s e convesiers
: G ric
. - Graphics
Body Frames "Wt yot hmve comtrincied this graphic sbject aad dramn
* 1 bt Fppemt Ky (PFY) tn smoke the first copy.
- Theis copry i the coryvat object. You cam change the
 whjrit by doling any wnmuber of follewing wtions
i ® Repoaiion the vhject ualag i curser seearsl s,
Type i
\ v:m.:;:::-.u.u-nh.—"n-;--m
T cupy the wbjert, rapeed ot st of nctions.
Rld oo e o Revisable Text
L Dywe ther tronfarmed sbject - Content
2 Cupy the st shject drewa ; :
. X Repent the wi of actbone i N rE—— Generated
Footer Frame —p~ 78 .. PERSOMAL PUBLISHING SYSTEM INTRODUCTION |

Figure 13.18: Layout view and content of an ODA document.

body = chapteri chapter?

chapterl = heading paragraph ... picture ...

chapter2 = heading paragraph picture paragraph

The above example describes the logical structure of an article. Fach article consists
of a preamble, a body and a postamble. The body includes two chapters, both of them
start with headings. A content is assigned to each element of this logical structure.

An example, shown in Figure 13.20, demonstrates the relation among a content.
logical structure and layout structure. Figure 13.21 shows the contents and the
logical and layout structures of the document from Figure 13.20. This figure consists
of a title, a describing text and a figure. The title and describing text are mapped
onto the content architecture Character Content Architecture. The figure belongs
to the content architecture Raster Graphics Content Architecture.

The logical structure of the example dictates for each section at least one title, one
paragraph and one figure. This behavior is shown in Figure 13.21,

1

134 DOCUMENT ARCHITECTURE QDA

Logical Structure Content
Generic-Specific [Ceramphne § Mgt w1 Formartted Text

Content
Heuder --mmm-—ol F tiraphic { et

Sectivn Tithe =~ THE -T1MES TRANSEFORM COMMAND

By waing bhe N comae Yoo cui producs = weques s of
vhmrged copies of B grephi ohfect. ¥ igure A1 shews
A LA uf Ube St ! FAUI CRGE Lt e aa B ved

Figure: - Grometric

-lltusirativey ~———f- Graphivs

-Capbon Content
—_] 9

Figuie 45, M- LIVIES CRANSFOMM baamphe

Puragruph —————Jae When you s constructet ths graghl et snd deawn
EE. st thie dwprewE ey PET b ahaie Che IO opy.

Iks warpy 13 b Curreoal bt Yo van <R dhe

hect e dn ” it hg wethoie:

& vouuet unin
Unirdered List —3= . 5.

‘ Revisubie Text
Uhrdered iist —— -

™ Content
F-— Generaied
Lontent
Atumaliv e THy Friytwal ALBLINHING 83 3 VM i vTROULCY (U
Fupge Numibering - PRp———
,,..-——-""—.r__—

Fouter

Figure 13.19: Logical view and contont of an ODA document.

In the upper right paragraph of Figure 13.21, the layout structure of the document
is displayed. It consists of several frames which are ordered in a certain style on the
two-dimensional surface.

The ordering is presented througl individuil lines between the vlements of the dif-
ferent areas. A content portion i< assigned to ecach leaf of the logical tree (a basic
object) and of the layout tree.

ODA distinguishies the following lavout and logical structures:

o The yoneric Ingical and generic layout structures include a set of default values,
For example. a paragraph can be specified with LeftHandOffset = 0.

. The specific logical and specific layout structure describe a concrete document.
They are linked to the generic structure. For example, a concrete paragraph
can be defined with LeftHandOffset = icm. The following example presents a
specific layout object:

520 - CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

brief instructions: Setting TY Stations

TV siations brosdcast uccording tv difforent ssundards
in different countrics (se wbie of sandurds).

Proceed as follows to wet a sution which cunforins

tw u difterent standard (foulti-suendard version valy s

Select the desired program number. Press the " C-Dution
Z4 10 set the chuane] luaction und coter the desired
channel number.

o O 00

=
L

15

Figure 13.20: An ODA document (exumple).

object type: block

object identifier: title

position: (x=111, y=222)
dimensions: (height =333 width=444)

content architecture class: formatted character
content architecture
content portions: (POINTER TO TEXT)

The information architecture ODA includes the cooperative models shown in Figure
13.22. The fundamental descriptive means of the structural and presentational
models are linked to the individual nodes which build a document. The document
is seen as a tree. Fach node (also a document) is a constituent, or an object. It
consists of a set of attributes, which represent the properties of the nodes. A node
itself includes a concrete value or it defines relations between other nodes. Hereby,
relations and operators, as shown in Table 13-1, are allowed.

If we consider document processing according to Figure 13.3, in ODA it can be
presented as shown in Figure 13.23.

‘13.4. DOCUMENT ARCHITECTURE ODA 521

logical structure layout structure

NN

image

text text

Figure 13.21: Relutions among content and logicel and layouw! structures {erample
from Figure 13.20).

The simplified distinction is between the editing, formatting (Document Layout
Process and Content Layout Process) and actual presentation (Imaging Process).
Current WYSIWYG (What You See Is What You Get) editors include these in
one single step. It is important to mention that the processing assumes a linear
reproduction. Therefore, this is only partially suitable as a document architecture
for a hypertext system. Hence, work is occurring on Hyper-QDA. For the document
exchange, different docurnent architecture classes can be used, as shown in Figure

13.23:

o A formatted document includes the specific layout structure, and eventually
the generic layout structure. It can be printed directly or displayed, but it
cannot be changed.

o A processable document consists of the specific logical structure, eventually the
geueric logical structure, and later of the generic layout structure. The docu-
ment cannot be printed directly or displayed. Change of content is possible.

522 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Figure 13.22: ODA information architecture with structure, content, presentation
and representation model.

» A formatted processable docurnent is a mixed form. It can be printed, displayed
and the content can be changed.

For the communication of an ODA document, the representation model, shown in
Figure 13.22, is used. This can be either the Open Document Interchange For-
mat (ODIF) (based on ASN.1), or the Open Document Language (ODL) (based on

SGML).

The manipulation model in ODA, shown in Figure 13.22, makes use of Document
Application Profiles (DAPs). These profiles are an ODA extension for document
manipulation. Because of the QDA structure, the extension defines three different
levels, which represent a subset of ODA (Text Only, Text + Raster Graphics +
Geometrie (raphics, Advanced Level).

134. DOCUMENT ARCHITECTURE ODA 323

Sequence all child nodes are ordered sequentially
Aggregate no ordering among the child nodes
Choice one of the child nodes has a successor
Optional one or no (operator)

Repeat one any times (operator)

Optional Repeat | 0 ... any times (operator)

Table 13.1: Relations among nodes.

13.4.2 ODA and Multimedia

Multimedia requires, besides spatial representational dimensions, the time as a main
part of a document. If ODA should include continuous media, further extensions in
the standard are necessary. Currently, multimedia is not part of the standard. All
further paragraphs discuss only possible extensions, which formally may or may not
be included in ODA in this form.

Contents

The content portions will change to timed content portions {[RG90]. Hereby, the
duration does not have to be specified a priori. These types of content portions are
called Open Timed Content Portions. Let us consider an example of an animation
which is generated during the presentation time depending on external events. The
information, which can be included during the presentation time, is images taken
from the camera. In the case of a Closed Timed Content Portion, the duration is
fixed. An example is a song.

Structure

Operations between objects must be extended with a time dimension where the time
relation is specified in the father node v in propertion to the child nodes &y, k2. The
following additional examples and described relations can be found in chapter 15 on

524 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

Formatted Processahle Document

] Cantent Portions 1 i {—I’rm cssable Des um(‘nll

Gonerle Baogical 17| Specific Logical 7] Generic Layout
Structure B Structure 2521 armcture
Content Layout Phrcummeni Bayont
procem
Frnrmatted
t_p —
¥ | Do mtlfl.
utput j——————-== imwging process
Hardware

Figure 13.23: ODA document processing - from the information to the presentation.
synchronization:

e before: ky before by, ky + ko > v

o meels: (ky,kg), by exactly before ko, ky + k2 = v
e overlaps

o during

o start

o end

¢ middle

o al

* equal

13.4. DOCUMENT ARCHITECTURE ODA 525
Content Architecture

Additional content architectures for audio and video must be defined. Hereby, the
corresponding elements, LDUs, must be specified. For the access functions, a set of
generally valid functions for the control of the media streams needs to be specified.
Such functions are, for example, Start and Stop. Many functions are very often
device-dependent. One of the most important aspects is a compatibility provision
among different systems implementing ODA.

During data coding, a link to the existing de-jure and de-facto standards is required.
Especially important standards are: JPEG for image compression, MPEG for video
and andio, H.261 for video and €D technology. The possibility of an open archi-
tecture should be considered. With this approach, further developments could be
considered today withont changing or extending the standard.

Logical Structures

Extensions for multimedia of the logical structure also need to be considered. For
example, a film can include a logical structure. It could be 2 tree with the following
components:

1. Prelude

e Introductory movie segment

e Participating actors in the second movie segment
2. Scene 1
3. Scene 2
4,
5. Postlude

Such a structure would often be desirable for the user. This would allow one to
deterministically skip some areas and to show or play other areas.

526 CHAPTER 13. BOCUMENTS, HYPERTEXT AND MHEG

A time relation between different objects is also relevant for the definition of the
fogical structure. This time relation should be specified ouly to the extent that the
user perceives content portions to be in sync. A relation can be delined between the
subtitles and the scene as a whole. althongh the exact time cannot he specified hy

the logical structure. This wonld rather conet the favont structnre,

A spatial relation between different objects is defined in the same way as it is done by
other discrete media. Instead of a tree structure in an ODA multimedia docnrent,
it should be possible to define a graph. This would allow for any kind of hypermedia

techniques.

Layout Structure

The layout structure needs extensions for multimedia. The time relation by a motion
picture and andio must he included. Further, questions snch as When will sonething
be played?. From which point? and With which attributes and dependencies? must

he answered.

The spatial relation can specify. {or example. relative and absolute positions by the
audio object. Additionally, the volime and all other attributes and dependencies

should he determined.

Especially by the continuous media. inte ractivity needs 10 be considered. The docu-
ment 1s not only anymore a paper. the lincar processing will become the interactive
processing, In the case of ODAL the imaging proccss should not be left out. as we

will discuss in the next section in terms of MHEG.

If all extensions of OIM\ with respect to the integration of continuous media are
summarized, the result is the multimedia document architecture shown in Figure
13.2.

f4.5. MIEG 327

13.5 MHEG

The committee ISQO/IRC JTC1/SC29 (Coding of Audio, Picture, Multimedia and
Hupe rmedia Information) works on the standardization of the exchange format for
multiniedia svstems, The actnal standards are developed at the international level
in three working groups cooperating with research and industry. Figure 13.24 shows
that the three standards deal with the coding and compression of individual media.
The results of the working groups: the Joint Photographic Ezpert Group (JPEG)

(" 1SOIECJTC1/SC29

i Coding of Audio, Picture, |
i Multimedia and Hypermedia Information j
T
/
/ ’
- \
o ™, s
O ower v wett) WG12
. o © | Coding of Moving | | Coding of Multimedia
Coding of Stit Pictures I i Pictures and AssociatedJ and Hypermedia
. (JBIG/JPEG) Ji { Audio (MPEG) Information (MHEG)
-— Content ——————» Structure

Figure 13.24: Working Groups within the ISO-SG29.

and the Motion Picture Ezpert Group (MPEG) are of special importance in the area
of multimedia systems (see Chapter 6 on compression).

In a multimedia presentation, the contents, in the form of individual information
objects, are described with the help of the above named standards. The structure
(e.g.. processing in time) is specified first through timely spatial relations between
the information objects. The standard of this structure description is the subject
of the working group WGI12, which is known as the Multimedia and Hypermedia
Information Coding Ezpert Group (MHEG). The name of the developed standard
is officially called Information Technology - Coding of Multimedia and Hypermedia
Information (MHEG). The final MHEG standard will be described in three docu-
ments. The first part will discuss the concepts, as well as the exchange format. The
second part describes an alternative, semantically to the first part, isomorph syntax
of the exchange format. The third part should present a reference architecture for

528 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

a linkage to the script languages. The main concepts are covered in the first docu-
ment, and the last two documents are still in progress; therefore, we will focus on
the first document with the basic concepts. Further discussions about MHEG are
based mainly on the committee draft version, because: (1) all related experiences
have been gained on ‘his basis {ME94]; (2) the basic concepts between the final
standard and this comn. *tee draft remain to be the same; and, (3) the finalization
of this standard is still in pi.,ress while printing this book. Note that the following
discussion is based on [ME94] designing, inplementing and improving the MHEG
standard.

13.5.1 Example of an Interactive Multimedia Presentation

Before a detailed description of the MHEG objects is given, we will briefly exam-
ine the individual elements of a presentation using a rmall scenario. Figure 13.25
presents a time diagram of an interactive multimedia presentation. The presentation
starts with come musicr. As soon as the voice of a news-speaker is heard in the audio
sequence, a graphic shewmld appear on the screen for a couple of seconds. After the
graphic disappears, the viewer carefully reads a text. After the text presentation
ends. o Stop button appears on the screen. With this button the user can abort
the audic sequence: Now. using a displayed input field, the user enters the title

Media
R Selection
' Stop
Video . RN
» " start
image A Sta
H .;.Start

Text stan 2244 . Modification

Audlo \ S AN N \1—\::-——-——-..—.‘_.
| : > Time
tart of
resentation

Figure 13.25: Time diagram of an interactive presentation.

of a desired video sequence. These video data are displayed immediately after the

13.5. MHEG 529

modification.

Content

A presentation consists of a sequence of information representatious. For the rep-
resentation of this information, media with very different properties are available.
Because of later reuse, it is useful to capture each irdormation LDU as an individual
object. The contents in our example are: the video sequence, the audio sequence,
the graphics and the text.

Behavior

The notion beiavior means all information whirh specifies the representation of the
contents as well as defines 1the run of the prewentation. The first part is controlled
Lv the actions start, sct volume, set position, etc. The last part is generated by
the definition of timely, spatial and counditional links between individnal elements.
If the state of the content’s presentation changes, then thi~ may result in further
cominands on other objects (e.g.. the deletion of the graphic causes the display of the
text). Another possibilitv. how the behavior of a presentation can be determined,
i+ when external programs or functions (script) are called.

User Interaction

In the discussed scenario, the running animation could be aborted by a correspond-
ing user interaction. There can be two kinds of user interactions. The first one
is the simple selection, which controls the run of the presentation through a pre-
specified choice {.g.. push the Stop button). The second kind is the more complex
modification. which gives the user the possibility to enter data during the run of the
presentation (e.g.. editing of a data input. field).

530 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG
Container

Merging together several elements as discussed above, a presentation, which pro-
gresses in time, can be achieved. To be able to exchange this presentation between
the involved systems, a composite element is necessary. This element is comparable
to a container. It links together all the objects into a unit. With respect to hyper-
text/hypermedia documents, such containers can be ordered to a complex structure,
if they are linked together through so-called hypertext pointers.

13.5.2 Derivation of a Class Hierarchy

Figure 13.26 summarizes the individual elements in the MHEG class hierarchy in the
form of a tree. Instances can be created from all leaves (roman printed classes). All

MH-Object

Behavior Descriptor Component acro
Action Link Script Content Interaction Composite

Selection Modification

Figure 13.26: Class hierarchy of MHEG objects.

internal nodes, including the root (italic printed classes), are abstract classes, i.e.,
no instances can be generated from them. The leaves inherit some attributes from
the root of the tree as an abstract basic class. The internal nodes do not include any
further functions. Their task is to unify individual classes into meaningful groups.
The action, the link and the script classes are grouped under the behavior class,
which defines the behavior in a presentation. The interaction class includes the user
interaction, which is again modeled through the selection and modification class. All
the classes together with the content and composite classes specify the individual

13.5. MHEG 541

components in the presentation and determine the component class. Soine propertics
of the particular MHEG engine can be queried by the descriptor class. The macro
class serves as the simplification of the access, respectively reuse of objects. Both
classes play a minor role; therefore, they will not be discussed further.

The development of the MHEG standard uses the techniques of object-vriented de-
sign. Although a class hierarchy is considered a kernel of this technique. a closer
look shows that the MHEG class hierarchy does not have the meaning it is often
assigned. Methods of the classes are not specified in the standard. therefore only
some attributes of the MH-object class are passed from their derived classes. In
this context, a problem of using ASN.1 syntax for MHEG class description becomes
obvious. ASN.1 does not support inheritance mechanisms; therefore, the reuse of
the attributes in the remaining classes, which are defined in the MH object class, is
applied. It needs to be mentioned that the MHEG class hierarchy is used mainly
because of didactical reasons. For the implementation of a MHEG run-time envi-
ronment, it does not have any importance.

MH-0Object-Class

The abstract MH-Object-Class inherits both data structures MHEG Identifier and
Descriptor.

MHEG Identifier consists of the attributes MHEG Identifier and Object Number
and it serves as the addressing of MHEG objects. The first attribute identifies a
specific application. The Object Numnber is a number which is defined only within the
application. The data structure Descriptor provides the possibility to characterize
more precisely each MHEG object through a number of optional attributes. For
example, this can become meaningful if a presentation is decomposed into individual
objects and the individual MHEG objects are stored in a database. Any author,
‘'supported by proper search functions, can reuse existing MHEG objects.

In the following paragraphs, the MHEG classes are presented and some main mech-
anisms are discussed. For more technical details, the interested reader should see
the committee draft [MHE93].

532 CHAPTER 3. DOCUMENTS, HYPERTEXT AND MHECG
13.5.3 Contents
Content Class

The content class differs fron the other classes beciuse it provides the link to the
actual contents. Through this content class, this information becones flexible and
is inked together in an open way in the system. Fach content object represents

exactly one information within a presentation,

The type of the particular medium is defined in a content object through the at-
tribute MHEC Classification and the coding is specified through the accribute Hook.
The actual data can be included either in the object (inefuded datu), or they can
be referenced through au uniambiguous wentifier (referenced date). The included
data are meaningtul only when a sinall amount of data is present. The reason is
efficiency because the content object itself is transformed, before any exchange oc-
curs, through the encoaerydecoder. The referenced data have the advantage that
they can be reused outside of MHEG.

At the time of content vbject processing, it must be guaranteed that the referenced
ata were requested through proper application services. For the presentation of
data, one medium-corresponding representation component is used.

The standard includes a set of codings. Be:ides the existing standards, future stan-
dard (Non-MHEG Standardized Catalogue), as well as application-specific coding
methods (Proprietary Catalogue), are considered. This is done through an open
definition of the individual formats.

Virtual Coordination Systems

The so-called Generic Space defines a virtual coordination system. Content objects
can be defined relative in dimension and ordering to each other. There are three axes:
X (width), Y (height) and Z (depth). A value from -32768 to 32767 is assigned to
each axis. During the run-time. a translation from the virtual MHEG coordinates to
the physical coordinate system is performed in the particular presentation service
(e.g., the number of pixels which cover a Motif window). Additionally, a time

13.5. MHEG 243

coordinate systern exists with its axis T. The defined value set for this axis is an
interval from U to infinity where the scale unit is a millisecond.

Virtual Views

Until now we assumed that the presentation of the couteus socurs exactly as orig-
inated. Actually, MHFG provoies u set of possibilie. which can control a presen-
vation of the content objects through proper parameters, For example, 4 movie can
be played according to certain time specifications, the volume of an audio sequence
can be set or the visual arca of a graphic can be specified. The manipulation of
these parameters is determined through corresponding commands (see action class)
in the coding. he following example uf a compuivr aulaied basketball game
shows that the same player of each team can occur at different positions of the
field at the same time. Instead of storing all possible presentation combiunations as
separate content objects, the change of the parameter is modeled as a call of an
objec s method. Using this approach, so-called virtual views { Presentable) to each
conteat object are created during run-time. These virtual views are specified at the
presentation-composition through unambiguous numbers. During run-time, they fix
the parameters according to the representation. Figure 13.27 shows some examples
of virtual views and illustrates the reuse pussibilities.

Fi F P
%
P4
Content Object Cutteg Dimension Poaition

Figure 13.27: Ezamples of virtual views.

Such views exist for all component-classes, as well as for objects of the selection,
modification and composite classes. However, they have within each class different
specifications. In the next paragraphs, if MHEG objects are addressed, virtual views
are meant. Only in the case of a different handling, the exclusion of virtual views
will be stated explicitly.

554 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG
13.5.4 Behavior
Action Class

The behavior of individual MHEG objects is determiued with the aetion class. Ac-
cording to the object-oriented terminology, an action-object is a.‘nwssa,gv which is
sent to a MHEG object. By the destination object, a corresponding method is called
which performs a change on this object. In an action object, the destination object is
not specified. Hence, the action class represents only the interface {set of all public
methods) to influence the presentation of individual MHEG objects. The imple-
mentation of the individual methods is hidden in the encapsulation of its specifics.
Turther, the capability of polymorphism is often used. This micans that actions with
the same name but with different specifications can exist. Altogether this leads to
a very homogeneous interface {e.g., the display of objects occurs independently of
the medium with the action run).

Individual actions can be classified into different groups depending on which method
they influence. It is apparent that not each action for each MHEG object, respec-
tively virtual view, is meaningful.

States and State Transitions

Some actions cause state changes on MHEG objects whick are very important.
The reader should recall the above described scenario where after the ending of
the graphics display, a text was displayed. To specify such a relation between the
presentation of the graphic and the text, a state needs to be defined where the
virtual view of the graphics is captured (graphics is displayed or not displayed). For
this purpose, the standard defines state transitions through protocol engines. Figure
13.28 shows two examples of state transition graphs. They are quite simple because
of the low number of states. The preparation status represents the availability of an
MHEG object. An example of a content object explains the status. At the beginning
the object is in the not ready state. With the action prepare, referenced data are
eventually localized and the necessary subsystem is initialized for the presentation.
It these activities are performed successfully, the state changes to ready and the

13.5. MHEG 535

(Nt Ready D Destroy (ot Funning], > Stop

Prepare Destroy Run Stop
y
(Croasy 17> propars (_Punning 1> um
Preparation Status Presentation Status

Figure 13.28: An ezample of two state transition graphs.

object can be displayed by a virtual view. With the action destroy, the resources,
allocated by the object, can be freed. The display of this ooject depends on the
presentation status of a corresponding virtual view.

Further state transitions are defined for the composition status, modification status,
time-stone status and script activation status. An exception is the selection status.
The different statuses are determined first with the modeling of the individual user
interactions in a presentation. The previously described actions are basic operations

of an MHEG object.

The construction of an action object also includes complez runs that are defined by
grouping several basic actions. Depending on requirements, single actions can be
performed in parallel or sequentially. The data structure of the action class defines
for this purpose a Parallel Action List. The elements of this list consist again of a list
of basic actions. Delayed Sequential Action is defined as a Sequence of Actions. The
basic actions in Delayed Sequential Action are processed only sequentially. Figure
13.29 gives a graphical overview of the data structure.

-— Parallel-Action-tist — g

set poshion | Delay [T
Delayed- sot aire Paraliel-
Sequential- | set temporal position sot volume Action
Action
run oot ti ‘

\ Elementary Actions /

Figure 13.29: An ezample of an action object.

536 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG
Link Class

So far, no relation which specifies the run of a presentation could be established
between an action object and a content object, respectively a virtual view. The link
class must fulfill two tasks. First, it specifies which actions are sent to which MHEG
objects. Second, the conditions are specified under which this process occurs. From
these tasks, it can be derived that the processing of an MHEG-coded presentation is
based on an event-driven processing model. This model is suitable for the mapping of
parallel running, synchronized processes which exist often in interactive multimedia
presentations. Their sequentialization depends on the performing system.

A link object consists of a set of links. The semantics of a link are shown in Figure
13.30. A link connects a source object with one or several destination objects. The

Additional Conditions Action List

N B
O
A D H
ttachment A Position
Pt woRn “AND" Pont
Source Objects Target Objects

Figure 13.30: Construction of a link.

source can be MHEG objects, as well as virtual views. The performance of a link is
always dependent on a condition (trigger condition), which can be expressed through
the possible state transition in the source object. Only if this condition is satisfied,
other conditions {additional conditions) are checked. If all conditions are satisfied,
the link is active. In this case, the action objects, specified in the action list of the
link, are sent to all destination objects.

Although the standard does not specify the implementation, it may be appropri-
ate to mention that the link is checked only if a state transition of the particalar
source objects occurred. This implementation is driven by efficiency reasons. The
attachment point is used to position destination objects relative to the source ob-
iect. Jt means that coordinates in an action ohject express a relative position of 11

13.5. MHEG 537

destination object with respect to the source object.

Script Class

Another possibility to determine the behavior of objects or the run of a presentation
is the script class. This class was considered to support an MHEG presentation in
other run-time environments (e.g., Script/X), external programs (e.g., a C-program)
or functions calls. Comparable with the content class, different languages either
standardized {(MHEG-Catalogue) or non-standardized (Non-MHEG-Catalogue), are
supported.

13.5.5 User Interaction

Using the previously described classes, the user cannot interact with a running
presentation. The introductory scenario has discussed that the MHEG standarc
distinguishes two kinds of user interactions: selection and modification.

Selection Class

The selection class provides the possibility to model an interaction as a selection of a
value from a pre-defined value set. The explanation of the link class has shown that
the tun of a presentation is controlled by the occurrence of events which are given
by the standard. With a selection object, it is possible to consider user interactions
also in the form of such events. A selection object takes over the definition of
these application-specific events. A corresponding event value is prepared for the
particular selection possibilities. At a certain point in the user interaction, there
exists a virtual view on the selection object (similar to a content object). The event
of the user interaction is stored in the view. The storage is performed through the
assignment of the particular event value onto a selection status field, which is pre-
determined. The change of this status field should lead to the following situation:
the condition of a link object is satisfied and therefore actions are sent to other
objects.

538 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

The change of the status field, as well as the display and control of proper primitives
(the following primitives are specified in the standard: menu, pull-down menu, pop-
up menu, button list, key list, device list, scrolling list, switch, item, bution, key,
device) at the user interface are suborders of the user interface services. With the
coding of a selection object, it is not specified which kind of primitives should be
used for the interaction. The primitive and its properties (e.g., text on the knob) are
set through actions (see selection style presentability) which are sent to the virtual
views of a selection object.

Modification Class

The second form of user interaction serves as the input and manipulation of data.
In contrast to a selection object, no value set is pre-defined by a modification object.
The event of an interaction is represented through an entered content object. Its
content is represented through the virtual view, which is defined for the content
object, and it is modified through the primitive of the user interface. The actual
processing state of the content object is captured in these virtual views in a mod-
tfication status field before the modification (modifiable), during the modification
(modifying) and after the modification (modified). Hence, it is possible, similar to
the selection, to query the status field through alink object, and therefore to control
the run of a presentation.

During the international agreement process, it was recognized that the ASN.1 coding
is incomplete in the CD-document. Exactly, the deal concerned a variable in the
content object. The value of this variable can serve again as a parameter for an
action (e.g., volume by set volume). In the current ASN.1 coding, a reference to
this variable for action objects is not possible. Therefore, so-called generic values
are included in the later version of the standard. They can contain the event of a
modification according to type. The following types have been specified: Boolean,
Character String, Numeric Value, Numeric Vector, Spatial Vector, Temporal and
Volume. Further, they can be reused by action objects. In some cases (e.g., fill out
a sheet), it will be necessary to return the values to the application. They can be
performed by the action refurn.

13.5. MHEG 539

13.5.6 Container
Composite Class

The composite class has the task of composing all the necessary objects from the
previously described classes into a presentation. Independently, if a single object is
included or referenced, each composite object behaves as a container. It means that
it represents a closed unit for the exchange of presentations among systems. The
functionality of a composite object must satisfy some assumptions for the synchro-
nized output through the MHEG engine. Through pointers (compare hypertext
links) between different composite objects, any complex presentation can be cre-
ated. At this point, the meaning of the abstract classes Behavior and Component
{Figure 13.26) should be clear. Figure 13.31 shows graphically the structure of a
composite object, including defined virtual views (Presentables) and two link objects
(Container-start-up, Presentation-start-up).

4 ——
Container-start-up Link object I
Presentation-start-up (__Link object

Behaviors _ o
(Action object) l:fi‘-eneric address Behavior object

{_ unkobject) (_ Script object }

i) Generic
address

Presentables

i Content))

Content object Y | (Compeaite ohject)

Components ;
&

J

Figure 13.31: Construction of a composite object.

Before we describe the individual parts, let us mention that the performance of

540 CHAPTER 13. DOCUMENTS, HYPERTEXT AND MHEG

cach composite object, as by all other MHEG objects, runs in two phases. The
first phase, started by the action prepare, initializes the composite object. It means
that the object itself, both start-up-link-objects and the included virtual views, are
registered. The second phase is the actual performance of the presentation. It is
triggered by the action run on a composite-presentable.

This two-phase processing can also be seen in the construction of a composite object
in both start-up-link-objects. The container start-up-link serves as the initialization
of the components included in the composite object. During the initialization, even-
tually necessary resources for the output are activated, or reserved in the executing
system. This is done to prevent, for example, delays which are caused by necessary
loading of swapped out parts. At the same time, further link objects can be ini-
tialized which are necessary for the description of the behavior of the component
object and its virtual views. Here, the link object always has the same condition
per definition: “if the preparation status of the corresponding composite objects
switches from not ready to ready, then ...”. What happens in individual cases is in
the responsibility of the application.

Also the Presentation Start-up-link has a pre-defined condition: “if the presentation
status of a composite-presentable switches from not running to running, then ...”.
This condition serves as the initialization of the actual presentation, for example,
through the start of a virtual view defined in the composite object.

The structure behavior includes all MHEG objects which prepare the component
objects for the definition of the presentation’s run and define the relations among
the virtual views. Individually, action, link and script objects are taken in. The
behavior objects can be included, as well as referenced.

The virtual views are defined in the structure Presentable. From a coding viewpoint,
each virtual view is represented as a pair: an unambiguous integer value in the
composite object and a pointer to a component object. The pointers usually point
to objects in the structure Components. If a virtual view is related to a generic
address, the component object is a referenced component object. This is meaningful
if a hypertext structure should be constructed through the link of several composite
objects

13.5. MHEG 541

All component objects, which are listed in the structure Components, are contained
physically in the composite object and marked with an unambiguous index.

The MHEG standard does not assume any granularity of the single composite ob-
ject. A composite object can relate to, for example, single user interaction as part
of an application, or it can describe a complete presentation. The granularity is
determined at the end by the particular application. For example, in the case of
a kiosk application, a typical page-oriented construction of the presentation’s run
leads to the definition of a composite object per page.

13.5.7 Closing Comments

Comparing ODA and SGML, SGML defines only a syntax for text marking, and
the semantics are undefined; ODA includes a specified semantics for description of
documents.

ODA offers the possibility to implement an open standard with integration of con-
tinuous media. This would allow the exchange of multimedia documents in the same
way as we exchange text documents through the mailing systems today. But, there
are still many missing aspects as described in the previous section.

ODA will have to consider security and color aspects. Further, backwards compati-
bility should be preserved. In the future, besides text and graphic, also tables and
data will be supported in documents. This will require a data exchange between a
document and spreadsheet, as well as a transformation from data to text. The no-
tion of partial documents should be introduced. Partial documents are incomplete
documents which include external pointers. These documents allow the definition of
a document above the computer boundaries. Formulas should be included as part
of ODA. A version management should be introduced; further content architectures
for others should be defined.

MHEG provides a specification for documents which includes time and user interac-
tions. Pictorial-related formats exist. ScriptX from Kaleida is the most prominent
example. At this point, it is not clear which architecture/language/format will be
widely accepted in the future because, for example, HyTime as an exclusion to
SGML has also been developed.

